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Fast flat-histogram method for generalized spin models
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We present a Monte Carlo method that efficiently computes the density of states for spin models having any
number of interaction per spin. By combining a random walk in the energy space with collective updates
controlled by the microcanonical temperature, our method yields dynamic exponents close to their ideal
random-walk values, reduced equilibrium times, and very low statistical error in the density of states. The
method can host any density of states estimation scheme, including the Wang-Landau algorithm and the
transition matrix method. Our approach proves remarkably powerful in the numerical study of models gov-
erned by long-range interactions, where it is shown to reduce the algorithm complexity to that of a short-range
model with the same number of spins. We apply the method to the g-state Potts chains (3<g<12) with
power-law decaying interactions in their first-order regime; we find that conventional local-update algorithms
are outperformed already for sizes above a few hundred spins. By considering chains containing up to 2'6
spins, which we simulated in fairly reasonable time, we obtain estimates of transition temperatures correct to
five-figure accuracy. Finally, we propose several efficient schemes aimed at estimating the microcanonical

temperature.
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I. INTRODUCTION

Long-range spin models have drawn increasing interest in
the last decade, both in the microscopic modeling of a vari-
ety of systems ranging from model alloys [1] to spin glasses
[2] to neural networks [3], and as a powerful laboratory
frame to investigate fundamental issues in the physics of
critical phenomena. These include, e.g., the effect of dimen-
sionality [4], the crossover from short-range to long-range
behavior [5-7], mean-field driven phase transitions [8], and
possible connections with Tsallis’s nonextensive thermody-
namics [9-11]. Monte Carlo (MC) methods have now gained
a prominent role in the investigation of phase transitions in
these models [12-18]. In particular, a major breakthrough
was recently initiated by the introduction of a (canonical)
cluster algorithm able to overcome the algorithm complexity
inherent to long-range (LR) models, namely, the need to take
a huge number of interactions into account at each Monte
Carlo step (MCS) [12]. In a recent article, we proposed a
generalization of this algorithm to simulations in the multi-
canonical ensemble [19]. It is the goal of the present work to
introduce a general and versatile method aimed at embed-
ding any cluster update scheme in a flat histogram algorithm,
with special emphasis given to LR spin models.

Whether short- or long-range interactions are considered,
canonical MC simulations of long-range spin models suffer
indeed from severe shortcomings, the use of cluster updates
notwithstanding. First and foremost, models exhibiting first-
order phase transitions or complicated energy landscapes ex-
perience supercritical slowing down [20]: the time needed
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for the dynamics to tunnel through free energy barriers
grows exponentially with the lattice size, leading to quasi-
ergodicity-breaking and unreliable statistics. Second, the
computation of free energies and related thermodynamic
quantities is highly involved, and a precise determination of
the order of the transition is often intractable. In practice,
these shortcomings preclude the use of canonical MC algo-
rithms at first-order transitions except at modest lattice sizes
and in the case of weakly first-order transitions.

An efficient approach aimed at overcoming this limitation
is the simulation in generalized ensembles [21,22], in par-
ticular its multicanonical flavor initially proposed by Berg
[20,23,24], reconsidered in the context of transition matrix
dynamics [25,26] and recently revisited by Wang and Landau
[27,28]. The key idea here is to artificially enhance rare
events corresponding to local maxima in the free energy, by
feeding the Markov chain with an appropriate distribution
w(E). In the multicanonical ensemble, w(E) is set to the in-
verse of the density of states, so that the resulting dynamics
is a random walk in the energy space that yields a flat histo-
gram of the energy. Other ensembles have been proposed in
the last decade, including the 1/k ensemble, which enhances
low-energy states [29], and very recently, the optimal en-
semble, which aims at optimizing the distribution w(E) with
respect to the local diffusivity of the random walker, so that
tunneling times are minimized [30,31]. While still broad, his-
tograms engendered by these last ensembles are no longer
flat; in the optimal ensemble for instance, the histogram is
slightly peaked around the critical region, so that the larger
time spent by the random walker inside the critical region
compensates the lower diffusivity in this region.

When implemented through local (i.e., single-spin) up-
dates [7], simulations in the multicanonical ensemble suffer,
however, from two serious hurdles. First, while tunneling
times—measured in Monte Carlo steps (MCSs)—are re-
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duced from an exponential to a power law 7~ L* of the lat-
tice size, the dynamic exponents z are still substantially
higher than the ideal value z~D that should be expected
from the dynamics of a random walker [32,33]. This obser-
vation, as we will witness in this paper, applies equally well
to effective autocorrelation times and to equilibrium times;
this represents a serious hindrance in terms of scalability, in
particular whenever a higher precision is desired and large
amounts of decorrelated data need to be gathered. In this
respect, it is important to mention that correlations between
successive measurements do not only have an impact on the
statistical efficiency of multicanonical production runs, yet
also represent a source of systematic error regarding the es-
timation of the density of states [34]. A second impediment
to the scalability of local-update implementations specifi-
cally relates to long-range models. Here, the very presence
of long-range interactions makes the computation of the
energy—an  essential  ingredient of  multicanonical
methods—a very time consuming operation, namely, one as-
sociated with an O(L*P) algorithm complexity. As a result,
the demand on CPU time needed to generate perfectly deco-
rrelated statistics grows as L*2D with z>D.

In this paper, we present a Monte Carlo method which
successfully tackles these issues by performing simulations
in the multicanonical ensemble using collective updates. Our
methods combine the fast-decorrelating capabilities of clus-
ter algorithms with the versatility of flat-histogram methods
in an efficient and straightforward way, and with wide appli-
cability in view. In particular, it can be readily combined
with any iteration scheme dedicated to the estimation of the
density of states, e.g., Wang-Landau’s method [27] or transi-
tion matrix algorithms [25]. Additionally, while our method
is presented here in the context of long-range spin models,
where it gives drastic improvements over commonly used
methods, it is perfectly applicable to any class of models for
which a cluster algorithm exists in the canonical ensemble.

Noteworthy enough, embedding a collective update
scheme in a multicanonical algorithm is not straightforward,
however, due to the fundamentally nonlocal nature of the
multicanonical weight w(E). Indeed, cluster algorithms de-
pend heavily upon particular symmetries of the model
Hamiltonian, which w(E) does not keep track of; in particu-
lar, there is no longer a canonical temperature. With simula-
tions of spin models with nearest-neighbor interactions in
view, several attempts have been made at combining cluster
updates with multicanonical methods in some way or another
during the last decade: the multibond algorithm [32,35-37]
or variants thereof targeting Wang-Landau’s algorithm
[31,38] simulate the model in its spin-bond representation;
Rummukainen’s hybridlike two-step algorithm lumps to-
gether a microcanonical cluster algorithm and a multicanoni-
cal daemon refresh [39]. As opposed to these, however, our
method relies on a cluster-building process which simply de-
pends on the microcanonical temperature of the current
configuration—a quantity that may be readily derived from
the estimated density of states—in order to determine appro-
priate bond probabilities. In particular, it does not require
prior knowledge of the transition temperature, as is the case
in the multibond method. We further show that our approach
makes it particularly straightforward to incorporate two op-
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timization schemes dedicated to LR models [12,40], which
cut down the algorithm complexity from O(L?P) to
O(LPIn LP). As a result, the total demand on CPU time with
respect to uncorrelated data is reduced to approximately
L*PIn LP, since cluster updates also lower z to around D;
where LR models are concerned, the benefit of cluster up-
dates is thus clearly twofold. Let us also mention that, as a
by-product, using cluster updates provides improved estima-
tors for the statistical moments of the order parameter [41]
and for spin-spin correlation functions; for instance, the last
quantity can be better estimated by counting the fraction of
time two given sites belong to the same cluster [42,43]. Fur-
ther interesting information, including information connected
with fractal geometry, may also be gleaned from cluster sta-
tistics [44,45].

Overall, the sharp reduction of the computer load brought
about by our method allowed us to study g-state Potts chains
with 1/7'* interactions containing up to 2'¢ spins in a few
days on a modern Intel-based computer. It must be noted
that, with standard multicanonical methods based on single-
spin updates, such huge sizes are simply intractable, since
the largest size of 2!® investigated in this work would de-
mand several months of computation. As regards dynamic
performance, we obtain a substantial reduction in the dy-
namic exponent, from e.g., z~1.35(3) to z~1.05(1) for ¢
=6 and 0=0.7. We also show that our method produces
faster equilibration, lower effective autocorrelation times,
and—where implementations based on the Wang-Landau al-
gorithm are concerned—Ilower statistical errors in the esti-
mate of the density of states, e.g., of nearly an order of mag-
nitude for g=6; 0=0.9, and L=512 spins. As a result, we
obtain estimates of transition temperatures that have a no-
ticeably higher precision than those obtained using local up-
dates [7] or standard canonical methods [13,14]. Finally, in
order to check that our method did not produce systematic
errors, we performed several simulations of the two-
dimensional seven- and ten-state Potts models with nearest-
neighbor interactions and sizes up to L=256X256. We ob-
tain dynamical exponents close to the ideal random-walk
value z~2. Although computed from rather modest statis-
tics, our estimate of the interfacial free energy for the largest
size reaches a precision of four digits. In this respect, our
method compares perfectly well with other methods operat-
ing in the multicanonical ensemble, and represents an alter-
native way for short-range spin models.

The layout of this paper is as follows. In Sec. II, after
briefly reviewing some prominent features of multicanonical
methods, we explain how we combine a multicanonical
weighting with collective updates, with special emphasis
given to the detailed balance equation. Section III addresses
optimizations dedicated to long-range models. Numerical re-
sults regarding the dynamic characteristics of our method are
presented in Sec. IV. In Sec. V, we compare our results for
the two-dimensional Potts model with nearest-neighbor inter-
actions, with exactly known results, and Sec. VI is devoted
to the investigation of the precision of our method in the
context of the long-range Potts chain with power-law decay-
ing interactions. Overall, we pay particular attention to com-
parison with other algorithms operating in the multicanonical
ensemble, especially in terms of tunneling rates, dynamical
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exponents, and estimates of thermodynamical averages. Fi-
nally, we discuss several procedures aimed at estimating the
microcanonical temperature, and in particular, how we can
efficiently combine our method with the transition matrix
approach.

II. A METHOD TO EMBED CLUSTER UPDATES IN A
FLAT-HISTOGRAM ALGORITHM

Monte Carlo simulations are based on the generation of a
Markov chain of configurations {o,}, where each configura-
tion is assigned a weight w[E(0;)] corresponding to the prob-
ability distribution one wishes to sample. In canonical simu-
lations, i.e., carried out at a fixed inverse temperature /3, one
chooses a Boltzmann weight w[E(o;)]=¢~P(9), thus thermo-
dynamical averages are straightforwardly obtained by com-
puting the appropriate moments of the data accumulated at
the given temperature. On the other hand, reweighting meth-
ods based on multihistogramming [46] are hampered at large
lattice sizes by the narrowness of the energy window that is
sampled, let alone additional supercritical slowing down. In
the multicanonical ensemble, one allows the dynamics to
jump across free energy barriers and, from a more general
standpoint, to sample wide energy windows, by producing a
flat energy distribution over the energy range of interest for
the problem at hand. This is formally carried out by setting
w(E)=e5® o« 1/n(E), where n(E) is the density of states and
S(E) is the microcanonical entropy. This in effect leads to
N(E) > n(E)w(E)=const for the number of visits to energy E.
Since the density of states is obviously a priori unknown,
w(E) is estimated using an iterative procedure initially fed
from, e.g., a canonical guess w(E)=¢ PF at a carefully cho-
sen inverse temperature B, a flat guess w(E)=1, or—
whenever feasible—a properly scaled estimate obtained at a
smaller lattice size. Thermodynamic quantities that depend
solely on the energy, like the specific heat or Binder cumu-
lants, can then be computed directly from the estimated den-
sity of states. Other quantities, e.g., those depending on the
order parameter, are obtained through a reweighting proce-
dure based on data gathered during an additional production
run.

Historically, Berg’s recursion scheme [47,48] was the first
iteration procedure specifically dedicated to multicanonical
simulations. It consists in accumulating histogram entries of
the energy during each iteration run, and updating w(E) from
the histogram of the energy obtained in a previous iteration
run, until eventually the histogram becomes flat up to a given
tolerance. Entropic sampling [49] more or less boils down to
the same key principle. Both methods suffer, however, from
poor scalability. Looking at this issue from a slightly differ-
ent angle, the recently proposed Wang-Landau acceleration
method [27,28] updates w(E) in real time during the course
of the simulation, performing independent random walks in
distinct energy ranges. Since modifying the weight of the
Markov chain during a simulation breaks detailed balance,
the amount by which w(E) is modified during a given itera-
tion is decreased from one iteration to the other until it
reaches a negligible value; hence detailed balance is approxi-
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mately restored in the last step of the iteration scheme. In
this respect, an original approach aimed at reducing the sta-
tistical error in the density of states was recently proposed by
Yan and de Pablo [50], whereby the density of states is ob-
tained by integrating an instantaneous temperature computed
from configurational information or from a so-called multi-
microcanonical ensemble. Finally, a large class of iteration
schemes have been proposed that are based on matrices of
transition probabilities [25,26,51-53] or a combination
thereof with Wang-Landau’s algorithm [54,55]. Here, the
density of states is computed through a so-called broad his-
togram equation involving infinite temperature transition ma-
trices, where transition matrices keep track of the microca-
nonical average of the number of potential moves from one
energy level to another (Sec. VII gives more details on how
our method can efficiently capitalize on transition matrices).
Historically, procedures based on transition matrices were
termed flat-histogram methods in order to distinguish them
from Berg’s multicanonical method, although both ap-
proaches in effect yield a flat, broad histogram. To sum up,
the main benefit of multicanonical methods is twofold: first,
a wide energy range is sampled, irrespective of the presence
of free energy barriers; second, the methods yield a direct
estimate of the density of states.

A local-update implementation of a multicanonical algo-
rithm may consist in updating a single spin at a time
and accepting the attempted move from state a to state b
with a probability given by W(a— b)=min[1,e5Fd-SE)],
We now show that the microcanonical temperature B(E) de-
fined as dS(E)/dE is a relevant quantity for the acceptance
rate of this process. Denoting E,=FE,+€, we expand the
probability W(a—b) for small € and obtain W(a—b)
~min[1,e P%d€]. This shows that, for small enough energy
changes, the dynamics is equivalent to that of a canonical
simulation at an inverse temperature B(E). Our departure
point for a collective-update implementation in the multica-
nonical ensemble is thus to build clusters of spins with the
same bond probabilities as would be given by a canonical
simulation at inverse temperature B(E).

Although our algorithm may be equally well applied to
other spin models, e.g., models incorporating disorder or ex-
hibiting a continuous symmetry, we now consider, for the
sake of clarity, a generalized ferromagnetic spin model with
a 7, symmetry, whose Hamiltonian reads H =—E,‘<_,-J,«j50i’gj.
Here J;;>0 and the o; variables can take on integer values
between 1 and ¢. Taking guidance from Swendsen-Wang’s
cluster algorithm [56], we start from an empty bond set, con-
sider each pair of spins {o;,0;} in turn, and activate a bond
between them with a bond probability given by m;(E,)
:évi,(,,[l—e‘JifB(Ea)], where E, is the current lattice energy
and ,BJ(Ea) the inverse microcanonical temperature at energy
E,. Efficient ways of estimating B(E) are considered later on
in Sec. VII. Then, we identify clusters of connected spins
using, e.g., a multiple-labeling scheme [57], draw a new spin
value at random for each cluster, and accept the attempted
move with an acceptance probability Ag;,(a— b) which en-
sures that detailed balance is satisfied. The derivation of this
probability may be carried out in the following way. First,
the total acceptance probability W(a— b), i.e., the quantity
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that enters detailed balance in such a way that e SEdW(a
—b)=eSEW(b—a), is split into two terms P(a—b) and
Apip(a— b) representing a proposed update probability and
an acceptance probability for the proposed update, respec-
tively. It is straightforward to show that the choice Ag;,(a
—b)=min[1,[P(b—a)/P(a— b)]eSE-SED] satisfies the
detailed balance equation. Let us denote B the set of active
bonds over the complete graph G engendered by all possible
interactions: the proposed update probability is given by the
probability to construct a given set 3 from an empty bond
set, 1.e.,

Pla—b)= ]I

bijeB

Wij(Ea) H [1_

bjjeG\B

W@j(Ea)]-

After simplification, we obtain for P(b— a)/P(a—b)
eliBEp) _ |

eB(Eb)Eb—,B(Ea)Eu _—
8 eliBED) _ |

where

a(E)
I1 2 E”)} (1)

b EB pz](E )

where a(E)=S(E)-B(E)E and p;(E)=e JiBE) 1. This ex-
pression can be further simplified if we consider long-range
models whose coupling constant depends only on the dis-
tance between spins, i.e., J;=J(I), where [=dist(i,j). We

have for Ag;,(a—b):
e (pl(Eb) )B(l) 2)
T 2o \ pi(E,) ’

where B(l) stands for the number of bonds of length I. It is
worth mentioning that, if one looks at this equation from the
standpoint of canonical simulations at inverse temperature
Bo, we have w(E)=ePF; where B(E)=8, and a(E) no
longer depends on E. As a result, the acceptance rate
Apipla—b) is equal to 1 and we are back to the original
Swendsen-Wang algorithm.

It is also crucial to underline that it is the microcanonical
temperature, i.e., the lattice energy in the first place, which
entirely governs the construction of clusters; indeed, for a
given lattice configuration at energy E, bonds are placed as if
the model were simulated at its microcanonical temperature
using a Swendsen-Wang algorithm. As a result, cluster bond
probabilities change continuously as the lattice configuration
walks along the available energy range of the random walk,
so that, e.g., small clusters are built in the upper energy range
and conversely large clusters in the lower energy range.

Apipla — b) = mml

alE,)

Aﬂip(a — b) = m1n|:1

III. OPTIMIZATION FOR LONG-RANGE MODELS
A. Computing the lattice energy through FFT acceleration

As is apparent in Eq. (1), determining the acceptance rate
of a cluster flip demands that we compute the energy of the
new (attempted) lattice configuration, which for long-range
models is an O(L?P) operation. This is similar to the local-
update case, where performing one MC step, i.e., updating
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P spins subsequently, takes a CPU time proportional to the
square of the number of spins, seeing that L operations are
needed after each single spin update to compute the new
partial energy between the updated spin and the rest of the
lattice. Recently, Krech and Luijten proposed an algorithm
that is able to compute the energy of a model governed by
translation invariant interactions in O(LPIn LP) operations
[40]. This method leans on the convolution theorem and the
fast Fourier transform (FFT), for which numerous efficient
radix-based implementations are available. As a result, up-
dating the lattice configuration globally rather than a single
spin at a time allows us to cut the O(L*") complexity down
to an O(LPIn LP) one. A crucial point to be noted here is that
this reduction is absolutely intractable with single-spin up-
dates, owing to the very reason that the energy would have to
be computed anew after each single-spin update; this re-
quires L operations, and an FFT algorithm would output no
gain at all.

Let us assume that we can write down the model Hamil-
tonian as a sum of dot products, i.e., H:—%EiijjljS(i)S(j),
with J;; invariant by translation. This is straightforwardly
done when ¢g=2, since in this case the dot product reduces to
a product of scalar Ising spins. As we will witness in a mo-
ment, the presence of a delta Kronecker symbol in the
Hamiltonian whenever ¢>2 requires, however, a minor
transformation of the Hamiltonian. For simplicity, we con-
sider hereafter a one-dimensional lattice with an interaction
J(I) depending on the distance [ between spins. The line ar-
gument is similar in higher dimensions, with the sole excep-
tion that multidimensional Fourier transforms are then per-
formed. The discrete Fourier transform (DFT) of the spin

sequence {§(l)}l=1...L reads

I=L-1
§(k) — E §(l)e—i2ﬂkl/[47

and reciprocally,

k=L—1

5(1) 2 S(k i2mki/L
k=0

Similarly, we define the DFT of the sequence of coupling
constants {J(I)} as

I=L-1

Jiky= >
=0

prc(l)e—iZﬂ'kl/L ,

where J,,.(1) incorporates the effect of infinite image peri-
odic boundary conditions [11], that is, J,,.()=2;"__J(
+mlL); for algebraically decaying interactions, this sum can
be exactly expressed in terms of Hurwitz functions [7]. We

diagonalize the original Hamiltonian H by rewriting it in

terms of the J(k) and §(k),
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k=L—-1

1 - = =
H:—i kE(,) J(k)S(k) - S(- k),

where it should be emphasized that §(—k) and §(k) are com-

plex conjugates, since the original vectors S(I) have real co-
ordinates. By relying on an FFT radix-2 algorithm, the task
of computing the lattice energy is consequently reduced to
O(L In L) operations.

For ¢>2, the Kronecker delta symbol in the Hamiltonian
unfortunately rules out the previous diagonalization. One
way to resolve this issue is to map the g-state Potts model
onto a (g-—1)-dimensional vector model, so that the Kro-
necker delta function in the original Hamiltonian is turned
into a dot product. We define a one-to-one mapping between

each Potts spin o=1---¢ and a unit-length vector S be-
longing to a (g—1)-dimensional hypersphere, so that
S(")'S(”’)=q5m,/—1/(q—1). It is straightforward to prove
that E(,S("):O, and that

-1 - N
H=L"" j(i - j)sto). 5 E J(i-
2q i#j qi<j

In the case of the three-state model, this transformation is
equivalent to mapping Potts variables onto the complex
plane, i.e., o— §(0) = pi2ma-1)3 " 4nq writing the dot product

S@).§@) g Re{S)S@)*} In this case, the term

S(k)-S(=k) becomes |S(k)]2, where S(k) is the DFT of the
sequence of (complex) variables {S'®}. This reduces by 1 the
number of O(L) operations required, since computing a dot
product is no longer required.

For g >3, spin vectors on the (¢—1)-dimensional hyper-
sphere may be determined by using hyperspherical coordi-

nates in D=g— 1 dimensions, i.e., for the ith vector 5‘(") (with
1=si< q),

x(2,) —sin a(li)sin agl) .- 8in 05;23C05 0222,

) —Sll’l 0<)SII1 0() COSt9<

xfl’zz =sin G(Ii)cos 6,

We initially set 0 '=0 for lsisqg-2, 0()—a for j<i=gq
and 1<j<¢g-3, and 6q D ——0((1) =a, . There remains ¢
-2 angles a; to be determmed from ¢-2 equations
SO.SH+D=_1/(g-1) with 1 <i<g-2, from where we ob-
tain a;=arccos—1/(g—1), cos a;,;=cos a;/(1+cos «;), and
thus by induction cos a;=~1/ (q J) After a bit of algebra

we find SD=(0,...,0,1), and
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> qlg—1i) . -1
§o={ 0.0 A]—da=D o o =L
(W 28 N ngivny e

for 1 <i<g, where the (¢g—1-i+j)th coordinate reads

(i) \/ 4q
X iwi=— . -
e (g=D(g-1—-i+))(g-i+]))

S@ and @V differ only in the sign of their first coordinate
x1. Once these vectors have been computed for a given g,
which may be done on startup, determining the lattice energy

requires first computing the DFT § j(k) of each sequence of
coordinates {S(/)-SY},_; ;. and then evaluating the double

sum 3p= L_lE‘f 1J(k)|S (k)|2 As a result, the whole operation
is assoc:1ated with a O(gL In L) complexity—or in general
O(gLPIn LP), provided the implementation relies on a FFT
radix algorithm. As a by-product, it should be noted that
once the Fourier components have been computed, it is
straightforward to derive the Fourier transform of the spin-
spin correlation functions at any inverse temperature 8 from

gpll)=1/L(Z1 1|S (k)[*) g, where the mean value is obtained
from a rewerghtmg procedure. At large lattice sizes, the re-
quirement that L Fourier components be stored at each MCS
may constitute a significant challenge in terms of computer
memory; in this case, a practical workaround consists in
computing microcanonical averages for each energy level
visited during the simulation, and then to perform the re-
weighting procedure directly from these microcanonical av-
erages. In the case of long-range interactions, careful atten-
tion must be paid, however, to the influence of the
discretization of the energy axis in terms of systematic error.

B. Efficient cluster construction for long-range interactions
decaying with the distance

For long-range spin models, building a new cluster at
each MCS takes of order L? operations, since LP(LP
—1)/2 pairs of spin are considered in turn for bond activa-
tion. When interactions decay with distance, the probability
of adding a bond between two spins falls off quite rapidly as
the distance between them increases. A significant amount of
time during the construction of the cluster is thus wasted
because an overwhelming number of bonds are considered
for activation which have only a negligible probability to be
activated. Even in the case of interactions decaying as 1/|i
—j|'*7 with & close to 0, does the bond count never exceed a
few percent of the whole number of available bonds. In this
respect, switching from a local- to a global-update scheme
might well be an ill-fated choice as the gain in terms of
autocorrelation time is spoiled by the exceedingly time con-
suming construction of the cluster. However, an efficient
construction method was proposed by Luijten and Blote in
the recent past [12], with an efficiency that is independent of
the number of interactions per spin, and a CPU demand that
scales roughly as LP. The rationale behind this method is to
use cumulative probabilities, whereby instead of considering
each spin in turn for addition to a given cluster, it is the index
of the next spin to be added which is drawn at random. We
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now give a sketchy outline of the method in the context of
long-range chains. Extensive details may otherwise be found
in Refs. [12,58]. First of all, the probability to add a bond is
split up into two parts, namely, (i) a provisional probability
m(E) (hereafter simply denoted ;) depending on the dis-
tance [=|i—j| between spins and on the lattice energy E, and
(ii) a factor f(0;,0;) controlled by the spin values, e.g., a
Kronecker delta symbol in the case of a Potts model. If 0
denotes the index of the current spin to which we are adding
bonds (i.e., spin indices are considered to be relative to the
current spin), then the provisional probability of skipping k
—1 spins and bonding the current spin with a spin at position
k>0 is given by Py(k)=11%",(1-m,)m. From there, one
builds a table of cumulative probabilities Cy(j;)==]L,Po(k)
for all j; >0, so that the index j; of the spin to be bound with
current spin 0 is obtained by first drawing a random number
0<r<1 and then reading out j; from the table, i.e., j; is
such that Cy(j;—1) <r<<Cy(j;). Standard binary-search al-
gorithms may be used for this purpose. Last, a bond is acti-
vated between spins 0 and j, with a probability f(oy,0; ),
and we proceed further with the computation of the index
J»>>j; of the next spin to be bound with current spin 0. The
corresponding provisional probability thus becomes Pj](k)
:Hf‘,;ljl (I=m,)m, and the cumulative probabilities read
Cj|02)=§l{}=jl +1Pj, (k). The same procedure is repeated for
{J3,j45...} until we draw a j,>L, in which case we jump to
the next current spin, which in a one-dimensional model is
the nearest-neighbor of the previous current spin. In addition,
there are two formulas which make it easier to compute cu-
mulative probabilities: first, one can show that Cy(j)=1
—exp[-B(E)=]_,J(k)], where E is the energy of the current
configuration, and second, the cumulative probabilities
C;j (as1) can be straightforwardly derived from the Cy(j)
coefficients  through the relation  C; (jar1)=[Co(jas1)
—Coj)I/[1-Cy(jn)] Tt follows from the last relation that,
instead of building a look-up table for each Cja(ja+,), we
may as well draw a random number 0 <r <1, transform it to
r'={1-Cy(j)]+Co(j,), and choose the next spin to be
added from the relation Cy(j1—1) <r' <Cy(jos1)- In prac-
tice, we thus simply need to compute a single look-up table
filled with /_,J(k) for each j at the beginning of the simu-
lation, from where we will derive the Cy(j) coefficients at
each new MCS corresponding to a lattice configuration with
a given energy E. This last task requires of order LP opera-
tions. To sum up, the construction of each cluster thus con-
sists in choosing a “current” spin amongst L—1 possible
spins in turn, e.g., starting from the leftmost one, and then
activating bonds between the current spin and other spins
located to its right by drawing a random number, scaling it,
and selecting the bond indices from a look-up table contain-
ing the Cy(j) coefficients at energy E. Once each spin has
been considered as a current spin, a cluster multiple labeling
technique can eventually be used to identify every set of
spins actually belonging to the same cluster [57].

IV. NUMERICAL TESTS OF ALGORITHM
PERFORMANCE

In this section, we address the performance of our algo-
rithm in terms of dynamical behavior. Since our work fo-

PHYSICAL REVIEW E 72, 056710 (2005)

cuses mainly on long-range spin models, we decided to per-
form intensive numerical tests on the one-dimensional
g-state Potts chain with LR interactions 1/[i—j|'*" decaying
as a power law of the distance between spins. The rich phase
diagram of this model, and the fact that several numerical
studies have been carried out on this model in the recent
past, makes it a perfect test case. For the sake of comparison
with other numerical methods, and in order to ensure that our
algorithm did not produce systematic errors, we also per-
formed several tests on the two-dimensional model with
nearest-neighbor (NN) interactions, for which exact results
are known (see Refs. [59,60]; also references in Ref. [61]).
Both models are known to exhibit a first-order transition for
an appropriate set of parameters, namely, ¢ >4 for the NN
model [62], and o< o,(q) for the LR one, with for instance
0(3)=0.72(1) [7]. We chose a set of parameters that would
allow us to observe both weak and strong first-order transi-
tions, and concentrated on several indicators of performance,
reliability, and scalability: these include tunneling, equilib-
rium, and effective autocorrelation times, and mean accep-
tance rates. These indicators inform us on the efficiency with
which the Markov chain reaches the equilibrium distribution
and explores the phase space. They also tell us at what rate
successive measurements decorrelate from each other; hence
what amount of resources is needed to obtain reliable statis-
tics. Overall, they are therefore good indicators as to whether
CPU resources are efficiently utilized or not. As regards scal-
ability, we also computed the dynamical exponents associ-
ated with tunneling and equilibrium times; these indicate
how fast needs in CPU time grow with the lattice size.

All densities of states were calculated by means of the
Wang-Landau algorithm, whereby, starting from an initial
guess of the density of states n(E), we update n(E) after each
visit to energy level E according to the rule Inn(E)
—Inn(E)+In f, where In f is hereafter termed Wang-Landau
modification factor. In the case of LR models, the unequal
spacing of energy levels and the existence of energy gaps in
the vicinity of the ground state required that we introduced a
few changes over the original version. In particular, using an
interpolator for In n(E) turned out to be mandatory in order
to compensate for the finite width of histogram bins—as
would also be required for models having a continuous sym-
metry; indeed, we observed that using large bins tends to
strongly reduce the acceptance rate if no interpolator is used.
Bezier splines provide good interpolators, although a linear
interpolation with a slope given by the microcanonical tem-
perature B(E) also proved to be particularly efficient when-
ever this last quantity was made available by other means,
e.g., the transition matrix.

For small and medium lattice sizes, we systematically per-
formed all simulations twice, first with standard single-spin
updates (SSUs) and then with our method embedding cluster
updates (CUs). We give an estimate of the error in the den-
sity of states obtained from both types of update schemes.
For the largest lattice sizes we studied, however, the SSU
implementation simply turned out to be impracticable, due to
either exceedingly high tunneling times, and—for LR
models—excessive CPU demands, and we present results for
the CU algorithm only.
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A. Phase space exploration and mean acceptance rates

As opposed to the (canonical) Swendsen-Wang cluster al-
gorithm, the acceptance rate of our algorithm—Eq. (1)—is
not trivially equal to unity. Still, it is tightly related to the
efficiency with which the Markov chain wanders about the
phase space, since a low acceptance rate would lead to very
repetitive dynamics. In this view, it is instructive to compute
an approximate analytical expression of this acceptance rate
when the initial and the final energies E, and E,, differ only
by a small amount. Writing E,=FE,+¢€, and carrying out a
series development to first order in €, one obtains Ag,
=min[1,1+A(E,)dE], where

1 ij E
A(Ea) = B,(Ell)< 2 ‘Iij L ( a) - |Ea|> s
b,v_,-eB pij(Ea)

with the same notation as in Sec. II. We wish to obtain an
estimate of the first statistical moments of A(E). We hereafter
consider the case of a model with nearest-neighbor interac-
tions (J=1), for which we can carry out an exact derivation.
The last expression simplifies to

where B stands for the total number of bonds and p=p(E,)
=ePEJ_1. At a given energy E,, at most |E,| bonds may be
activated. The probability to activate a bond is w(E,)
=p(E,)/[1+p(E,)]=1-ePEd; hence the probability to cre-
ate a bond set B containing B bonds writes P(B)

1+

A(Ea>=/3’(Ea)(B P _lE,
P

|E,| B |E,|-B .
= [#w(E,)1P[1-m(E,)]"*®, which may be reexpressed
B

i[5 2"

B ) (1+p)Fd

From there, we can derive the average bond count, (B)
=|E,|[p/(1+p)]. This allows us to rewrite A(E,) as

as

A(E) =B (E) (B - B

hence (A(E,))=0. The variance of A(E,) is thus proportional
to the variance of the bond count distribution, i.e., (B%)
—(B)*=|E,|[p/(1+p)?*], which yields

|Ed|

exXp B(Ea) -1 .

For a given €>0, one half of all attempted cluster flips thus
leads to an acceptance rate which is lower than 1, the other
half saturating at unity. Assuming a Gaussian distribution for
A(E), with the standard deviation computed above (which is
valid for large enough lattice sizes), the mean acceptance rate
is readily obtained from the mean value of a Gaussian dis-
tribution centered at unity and truncated above 1, which
yields

V(A(E,)?) = SA(E,) = |B' (E,)|
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FIG. 1. Mean acceptance rate as a function of the energy per
spin for the six-state long-range Potts with 0=0.7, and L=1024
spins. The dashed line shows the estimated inverse microcanonical
temperature. The vertical dotted lines indicate the position of the
histogram peaks corresponding to the ordered and disordered
phases.
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In the case of interactions depending on the distance / be-
tween spins, one may observe that the average energy is
related to the average number of bonds of length I by —(E)
=3, oJ(O[(1+p) ! pKB(1)), which shows that (A(E))=0 also
in this case.

At a first-order transition, B(E) varies smoothly between
the energy peaks of the ordered and disordered phases, which
ensures that A(E) remains small. The mean acceptance rate
for the six-state LR Potts chain with ¢=0.7 and L=1024
spins is sketched in Fig. 1. While the acceptance rate is close
to 1 inside the range of phase coexistence, the variance of
A(E) increases when E lies outside the range of phase coex-
istence, and therefore leads to a reduction in the acceptance
rate. We observe that this diminution is less marked at low-
energy levels, for the energy cost associated with flipping a
small number of big clusters is lower than that associated
with randomly updating a great deal of small clusters, and
E,—E, is consequently lower in the last case. It is worth
underlining, however, that the energy range of interest in the
analysis of first-order phase transitions spans an interval
which is only moderately larger than that corresponding to
phase coexistence, the only requirement being that metasta-
bility plateaus [7] and histogram peaks must be clearly vis-
ible. As a result, the fact that the mean acceptance rate for
cluster flips remains well above 90% inside this range of
energy represents already an improvement of a factor 3 with
respect to the standard multicanonical approach, where we
obtained acceptance rates oscillating around 30%.

B. Dynamic properties

Where performance measurements at first-order transi-
tions are concerned, tunneling times have thus far been
regarded as one of the most meaningful measurement param-
eters [32,61,63]. They are defined as one half of the average
number of MCSs needed for the walk to travel from one
peak of the energy histogram to the other—where peaks are
defined with respect to the finite-size transition
temperature—and turn out to represent a fairly good indica-
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FIG. 2. Tunneling times for the long-range Potts chain with ¢
=3, 0=0.4 (dashed lines) and 0.6 (dotted lines), and ¢=6, c=0.7
(solid lines). Triangles refer to the SSU implementation, while
squares indicate estimates for our method (CU). Dynamic expo-
nents z were determined from a fit to the power law 7, ~ L.

tor of the interval between roughly independent samples.

Results for the LR chain with ¢g=3 and 6 are shown in
Fig. 2. Dynamic exponents z were determined from a fit to
the power law 7,~ L%, and are summarized in Table I. We
can witness a substantial reduction for both the LR and the
NN models, with exponents close to and sometimes even
below the ideal random-walk value z=D. As regards the NN
model, our values compare extremely well with those ob-
tained with the multibond method [32] and with Rummu-
kainen’s hybridlike two-step algorithm [39], although these
approaches and ours differ markedly in the way clusters are
constructed.

It should be mentioned that the distance E;—E, the ran-
dom walker must travel, i.e., the energy gap between the
peaks of the histogram, does not scale linearly with the num-
ber of spins. This feature is especially apparent for long-
range interactions, where E;,—E, grows all the more faster
with increasing lattice size that o comes closer to 0. As a
result, the power law 7,~ L% yields dynamical exponents
which are underestimated with respect to the value given by
a power law of the form 7,~ (E;,—E,)* (up to a dimensional
factor 2 for the NN model). For instance, we would obtain
z=1.40(3) instead of z=1.35(3) for g=6 and 0=0.7, and z
=1.10(1) instead of z=1.05(1). Where the performance in

TABLE 1. Dynamic exponents z for the g-state Potts chain.
z(SSU) and z(CU) refer to single-spin and cluster updates, respec-
tively, while z,,,5, and z,,,c;,s make reference to the multibond
method [32] and Rummukainen’s multimicrocanonical cluster
method [39] applied to the NN model.

q o Z(SSU) Z(CU) ZmuBo ZmuClus
6° 0.7 1.35(3) 1.05(1)

3 0.6 1.48(2) 1.11(1)

3 0.4 1.13(2) 0.89(1)

7° 2.60(4) 1.82(2) 1.84 1.82(3)
10° 2.87(4) 2.23(1) 2.1

*Power-law decaying interactions.
"Two-dimensional counterpart with nearest-neighbor interactions.
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terms of CPU demands is concerned (and in particular if one
is interested in how it grows with the size of the system), we
think, however, that the traditional definition 7,~ L* is more
meaningful.

While tunneling times represent a practical way to esti-
mate the efficiency with which the random walker drifts
along the energy landscape, they are subject to two limita-
tions. First, they cannot be properly defined in the case of
second-order phase transitions, since the histogram of the
energy no longer exhibits two peaks. Second, there is no
direct connection between tunneling times and autocorrela-
tion times, which makes it difficult to estimate the optimum
interval between measurements that will yield perfectly un-
correlated data, and thus minimum statistical error in esti-
mates of thermodynamic data. It is worth mentioning here
that computing integrated autocorrelation times naively from
the set of measurements, i.e., just as is usually done in the
canonical case, simply makes no sense when simulating in
the multicanonical ensemble, because the quantities we are
interested in are, in the first place, reweighted averages of
thermodynamical data [61].

Therefore alternate definitions have been proposed, which
try to circumvent these limitations. One approach is to com-
pute the so-called round-trip times [64], which are computed
from the number of MCS needed to get across the whole
energy axis, that is, from the ground state to the upper energy
level. Although round-trip times may be determined for any
order of phase transition, they present unfortunately no more
connection with statistical errors than do tunneling times. On
the contrary, multicanonical effective autocorrelation times,
which were first introduced in the framework of the multi-
bond algorithm [32], offer a direct comparison with expo-
nential or integrated autocorrelation times of traditional use
in canonical simulations. Mimicking the canonical case, the
effective autocorrelation time 7.4 can be defined for any ther-
modynamic variable # by inverting the standard error for-
mula 620= 0'2027'eff/N, where N stands for the total number of
(possibly correlated) measurements, a% denotes the variance
of the (reweighted) thermodynamic variable 6, e.g., (E?)
—(E)?, and e% is the squared statistical error in the same
variable. The error may be estimated either from resampling
or (jackknife) blocking procedures, or by performing mul-
tiple independent runs. Since both the variance and the error
depend on the reweighting temperature, the previous defini-
tion obviously yields an effective autocorrelation time which
also depends on the temperature.

We now discuss our results for effective autocorrelation
times obtained for the six-state LR Potts chain with 0=0.9
and 128=<L=1024 spins. For this value of o, the model
exhibits a very weak first-order transition with no clearly
visible histogram peaks for sizes below L~ 2000. The choice
of medium lattice sizes was dictated by the fact that we com-
puted the error from multiple independent runs (around 20
runs of 10° MCSs each), which we found a more reliable
way of computing the statistical error than using a blocking
procedure. Figure 3 shows the dependence of 7. on the tem-
perature for L=512. For both algorithms, 7. exhibits a peak
in the vicinity of the effective transition temperature T.(C,)
=0.7163(2). As expected, the reduction brought about by
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FIG. 3. Effective autocorrelation time 7.4 for g=6, 0=0.9, and
L=512 with (a) cluster and (b) single-spin updates. The effective
transition temperature defined from the peak of the specific heat is
T.(C,)=0.7163(2).

cluster updates in terms of correlation between measure-
ments is marked, especially in the transition region, where
single-spin update leads to a critical slowing down similar to
the one encountered in canonical simulations. This behavior
is consistent with the very general observation reported re-
cently in Ref. [30] in the framework of the optimal en-
semble, and also in Ref. [65] in the context of equilibration
time for multicanonical algorithms (see also the next para-
graph for more details on this issue), whereby the random
walker diffuses at a slower pace in the critical region. In this
respect, cluster updates optimize the diffusive current of the
random walker in the critical region in much the same way
as do the optimal ensemble weighting proposed in Ref. [30],
yet with a distinct strategy: in the latter, the error is reduced
by allowing the walker to spend more time in the critical
region than in the rest of the energy axis; in our approach, it
is the decorrelating capability of the move update itself
which reduces the statistical error in the transition region. As
is well known, however, cluster updates are especially effi-
cient at the percolating threshold, and the reduction in terms
of correlation is large because bond probabilities are gov-
erned by the microcanonical temperature. This interpretation
is clearly underpinned by our investigation of the effect of
poor estimates of B(E) on tunneling times, presented later in
Sec. VII. Finally, we focus on the scaling behavior of auto-
correlation times. Table II reports our results for L ranging
from 128 to 1024 spins, where 7. is evaluated at the effec-
tive transition temperature determined from the peak of the
specific heat. Our method gives smaller autocorrelation times

TABLE II. Effective autocorrelation times at the transition tem-
perature defined from the location of the peak of the specific heat,
for the six-state LR Potts chain with 0=0.9.

L Tet(SSU) T(CU)
128 475 155

256 1390 310

512 3960 635
1024 12700 1370

z 1.6(1) 1.0(1)
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FIG. 4. Fit of effective autocorrelation times 7. to the power
law 7o L* for the six-state Potts chain (6=0.9 and L=512) with
(a) cluster updates and (b) single-spin updates.

already for L=128 spins. From these values, we also deter-
mined the associated scaling exponents by a fit to the power
law 7o L* (Fig. 4), and obtained a highly satisfying value
of z~1.0(1) with cluster updates.

We conclude the discussion on the dynamic characteris-
tics of our algorithm with an investigation of equilibrating
properties. As opposed to canonical simulation, estimating
equilibrium times has been much less common in the context
of multicanonical simulations; the nonlinear relaxation func-
tion, while very informative when the equilibrium distribu-
tion is driven by a Boltzman weight [66], is of limited use
indeed if the engendered distribution is flat. Recently, how-
ever, an efficient procedure aimed at estimating equilibrium
times for any equilibrium distribution was proposed by
Guerra and Mufioz [65]. This procedure relies on a y? regres-
sion with respect to the (expected) flat equilibrium distribu-
tion P(E). Starting from the same initial lattice configura-
tion, n Markov processes are run with distinct random seeds,
and at each MC step 1, a histogram of the energy V,(E) is
filled with the value of the energy of each process. Asymp-
totically, V(E) should approximate the expected flat distribu-
tion P(E)<n(E)w(E). In order to estimate the equilibrium
time in a more quantitative way, a x’(¢) deviation of V,(E)
with respect to the flat distribution is carried out at each MC
step 1, i.e., X2 ()= V,(E)-nP(E)]*/[nP(E)], where the
sum runs over histogram bins. For large n, and provided
equilibrium has been reached, the distribution of x*(¢) over
m experiments obeys a x> law with a number r of degrees of
freedom given by the number of histogram bins minus 1, that
is, with a mean equal to » and a standard deviation given by
\2r/m. Due to the intensive demand in CPU required by this
procedure, we restricted our estimation of equilibrium times
to the single case g=6 and 0=0.9. We performed n=1000
Markov processes for sizes between L=128 and L=512, and
estimated the equilibrium time from a single experiment
(that is, m=1) by simply monitoring the time needed for
X>(t)/r to reach unity and then stay within the interval [1
—20/r,14+20/r]. As illustrated in Fig. 5, relying on a single
experiment leads to quite large error bars, yet this is suffi-
cient for our purpose. From the graphs of x*(r) we read Teq
=4500£500 MCSs and 7,,=23000+£2000 MCSs for the
cluster- and single-spin updates, respectively; in spite of the
large uncertainty, the reduction in terms of equilibrium time
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FIG. 5. Plot of x*(r)/r for the six-state Potts chain (¢=0.9, L
=512) using (a) cluster updates and (b) single-spin updates. The
regression was carried out over a histogram containing 20 bins
populated from 1000 runs, all starting in ground state configuration
but with distinct random seeds.

brought about by our method is clearly visible. Results for
other lattice sizes are summarized in Table III. A fit to the
power law 7,,xL; (see Fig. 6) yields the scaling exponents
2¢4=1.96(5) and z,,=1.21(3) for the single-spin and the clus-
ter updates, respectively. Here again, we think that lower
diffusion currents in the latest case account for the higher
pace at which the random walker reaches the equilibrium
distribution.

C. Overall CPU demand for LR models

We now discuss CPU demand in the case of LR models,
and concentrate on the gain in CPU resources brought about
by the optimization schemes proposed in Sec. III. Assuming
a decently efficient algorithm implementation, this indicator
yields a rough account of the real algorithm complexity, al-
though it should be mentioned that it is usually an elaborate
task to estimate this quantity rigorously, partly because its
value hinges heavily on a variety of implementation, CPU
architecture, and compiler dependent properties. We decided
to measure CPU times over a series of 1-h-long simulation
runs on a handful of distinct CPU architectures, including
Intel Pentium and Xeon at 2.4 and 3.2 GHz. Figure 7
sketches averages of the CPU (user) time per MCS and per
spin, where small fluctuations might be attributed to the ef-
fect of varying CPU cache sizes amidst our clutch of CPU’s.
While for the local-update implementation the demand in
CPU per spin grows linearly with the number of spin, it is
roughly constant over a fairly large range of lattice sizes in

TABLE III. Equilibrium times for the six-state LR Potts chain
with ¢=0.9 obtained by monitoring the graph of x2(f)/r.

L 7,4(SSU) 7,4(CU)
128 1700 (100) 800 (120)
256 6000 (750) 2000 (200)
512 23000 (2000) 4500 (500)
1024 101000 (8000) 10000 (800)
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FIG. 6. Fit of equilibrium times to the power law 7,, o L* for the
six-state Potts chain (0=0.9): (a) updates and (b) single-spin
updates.

the case of our cluster-update algorithm. Moreover, our
method already outperforms the local-update scheme starting
from several hundred spins, with nonetheless an increased
footprint for higher g values which is accounted for by the
correspondingly higher number of FFT’s to be computed.
This, however, clearly demonstrates the breakthrough that
our method brings about for the study of long-range models,
paving the way for precise tests of finite-size scaling.

V. TWO-DIMENSIONAL NN POTTS MODEL:
COMPARISON WITH EXACT RESULTS

In order to check that our algorithm did not produce sys-
tematic errors, we computed transition temperatures and in-
terface tensions for the two-dimensional g-state Potts model
(g=7, 10) with nearest-neighbor (NN) interactions and heli-
cal boundary conditions. Results regarding the dynamic char-
acteristics of our algorithm for this model were reported in
Sec. IV; we will concentrate here on precision matters. For
g=10, we obtained T.L)=0.70699(5), 0.70491(5),
0.703 00(2), 0.702 78(1), 0.701 64(1), 0.701 328(4), and
0.701 249(2) for L=16, 20, 30, 32, 64, 128, and 256, where
T, was determined from the location of peaks of the specific
heat. C, was computed directly from the estimated density of

10?
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FIG. 7. CPU time per MCS and per spin for the long-range Potts
chain. Triangles indicate typical CPU times for the local-update
algorithm (SSU), irrespective of ¢ and o. Squares refer to our al-
gorithm (CU) with LR specific optimizations included; for ¢g=3 and
g=06, estimates were determined by averaging over the indicated o
values.
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states, and then refined from an additional production run of
length 107 MCS. The error was estimated by means of the
jackknife method. Following standard finite-size scaling
theory at first-order phase transitions, we collapsed C,(T)/L?
vs (T—T,)L? over the five highest lattice sizes and found an
infinite size temperature 7,.()=0.701236(3) in very good
agreement with the exact value 0.701 231 57... . The same
procedure applied to g=7 and L=64, 128 and 256 yielded
T.(0)=0.773 059(1) which again matches perfectly the exact
value 0.773 058 9.... We estimated the interface tension
(i.e., per unit length of the interface) f* between the ordered
and disordered phases from the histogram of the energy, re-
weighted at a temperature where energy peaks have the same
height [67]: 2f*=—L""In P,,;,, where the factor 2 arises from
the use of periodic boundary conditions. Here, P,,;, denotes
the minimum of the histogram between the two energy
peaks; peak heights are normalized to unity. We computed f*
directly from the density of states, and estimated the error
from the additional production run. In this respect, it should
be noted that estimating interface tensions directly from the
density of states generally yields values that lie below those
computed from histograms collected during production runs.
Our algorithm allowed us to determine f* with a four-digit
precision for sizes up to L=256 and nonetheless rather mod-
est statistics. For the seven-state model, we obtained 2f*
=0.0336(6), 0.0294(1), 0.026 31(8), and 0.023 84(9) for L
=32, 64, 128, and 256, a linear fit of the form 3 ~ 3 ()
+c/L [68] performed over the three largest sizes (i.e., for L
above the disordered phase correlation length £~48 [60])
yielded the infinite size value 0.022 30(11), still above the
exact value 0.0207 92, yet closer to it than estimates reported
in several previous studies [32,39,61].

VI. LR POTTS CHAIN: ERROR ESTIMATES
IN THERMODYNAMICAL DATA

In this section, we discuss the precision of our results for
the g-state Potts chain with algebraically decaying interac-
tions, i.e., J(r)=1/r*?. Our purpose is twofold. First, we
estimate the error in the density of states n(E) obtained from
the Wang-Landau algorithm, so that we can obtain a better
insight into the benefit of our method with regards to the
iterative calculation of n(E). Second, we determine confi-
dence intervals on reweighted averages computed from an
additional production run. Since computing thermodynamic
quantities from a production run does not require that the
histogram be perfectly flat, nor that the estimate of the den-
sity of states be perfectly accurate, this reduces to estimating
the gain in precision brought about by lower autocorrelation
times.

A. Statistical error of the density of states

In order to compare the error in the density of states pro-
duced by the single-spin update implementation and our
method, we performed for each method a series of 12 inde-
pendent simulations with the Wang-Landau algorithm, all
starting with the same initial guess of the density of states.
The model parameters were set to g=6,0=0.9, and L=512.
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FIG. 8. Statistical error in the density of states of the six-state
Potts chain for two distinct modification factors In f of the Wang-
Landau algorithm. The statistical errors were obtained from 12 in-
dependent runs. The parameters of the model are 0=0.9 and L
=512. (a) and (b) correspond to our method and the local-update
algorithm, respectively.

This choice of parameters guarantees that, in spite of the
modest lattice size we consider, autocorrelation times differ
by a sufficient amount between the single-spin updates
method and our method, so that the benefit may be clearly
interpreted in terms of decorrelating capabilities. The initial
guess of S(E) was scaled up from an estimate obtained at
L=256, and the updating factor of the Wang-Landau algo-
rithm was initially set to In f=5. We did not make use of all
improvements to the original Wang-Landau algorithm, as
proposed by Zhou and Bhatt in Ref. [34], since these would
have partly overshadowed the gain produced solely by lower
autocorrelation times. Indeed, we mainly focused on the sys-
tematic error (rather than the whole statistical error) that may
show up during the first iterations. It was shown in Ref. [34]
that this systematic error results from the combination of a
large In f coefficient with the presence of strong correlations
between adjacent binning. We thus simply relied on the
original histogram flatness criterion to switch from one itera-
tion to another, and divided Inf by the same amount
(namely, 5) after each iteration which passed the flatness
check. We found out, however, that using the criterion in
Ref. [34] instead, that is, averaging n(E) on multiple inde-
pendent runs after each iteration, and switching to the next
iteration only after a given number of entries was recorded in
the histogram [see Eq. (12) in Ref. [34]], led to markedly
lower statistical errors. As illustrated in Fig. 8, the statistical
error in the density of states is clearly improved by our
method. In particular, cluster updates lead to a spread of the
error over the whole energy axis. In this respect, and as al-
ready mentioned in Sec. IV, the lower diffusion rates associ-
ated with collective updates in the critical energy region offer
a clear benefit. As expected from the arguments of Zhou and
Bhatt, the reduction is also more marked for In f=0.04 than
for In f=1077, and the systematic error brought about by cor-
relations between successive binning is indeed partly tamed
by a lower Wang-Landau modification factor. Finally, we
show in Fig. 9 the resulting statistical error in the specific
heat, since thermodynamical averages are the relevant
quantities in the first place. C, was computed directly
from the estimated density of states n(E), i.e., according to
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FIG. 9. Graph of the specific heat for the six-state Potts chain
(0=0.9 and L=512) obtained directly the final estimate of the den-
sity of states with (a) our method and (b) the local-update algo-
rithm. The inset shows the relative error err(C,)/C,,.

the formula C,(kT)=(E>r—(E)i)/ (L kT?), where (E")
=[S E"n(E)e P*T]/[2 zn(E)e~F/*T]. For long-range models,
energy levels are not equally spaced, and it should be noted
that too large histogram bins may cause a systematic devia-
tion of the averages as well. We paid attention to this by
comparing our results for several bin widths, and made sure
that the systematic deviation engendered was always lower
than the statistical error itself. As shown in the inset of Fig.
9, the accuracy of the estimation of C,, is larger by nearly an
order of magnitude at the transition temperature. Inciden-
tally, we observe that this is comparable to the gain in terms
of autocorrelation times, as already presented in Fig. 3.

B. Transition temperatures, Binder cumulants,
and interface free energies

We now discuss some of our results for the three-state
Potts chain, for which we performed extensive simulations
for sizes ranging from L=128 to L=65536. As opposed to
higher values of ¢, there exists indeed a large collection of
numerical studies for g=3, so that comparison with previous
estimates is easier. Table IV reports our values for transition
temperatures and peaks of response functions for o=0.5.
Both the specific heat C, and the susceptibility y were com-
puted from production runs whose length varied between 10°
and 103 MCSs depending on the lattice size, and error bars
were computed by means of the jackknife blocking method.
We performed these production runs twice, first using single-
spin updates, and then using our method, yet in both cases
with the same estimate of the density of states. Figure 10
shows the graph of C, as obtained with cluster updates. We
mention that, for L>4096, the local-update implementation
was simply intractable as a result of excessive computation
times. For all sizes, our results match within error bars for
both methods, and it should be noticed that, for the two
largest sizes, we obtain estimates of finite-size transition
temperatures accurate up to the fifth digit.

In order to determine infinite-size transition temperatures,
we performed a fit of the finite-size temperatures T,.(L) re-
ported in Table IV, to the power law T.(L)—T.(°)=a/L. This
is illustrated in Fig. 11 where for the sake of clarity, only
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TABLE IV. Estimates of peaks of the specific heat C, and the
susceptibility x, and corresponding effective transition temperatures
for the three-state LR Potts chain with 0=0.5. Error calculations
were carried out by means of the jackknife method applied to a
single production run. The number of MCSs per production run is
the same for both methods, yet varies between 10° and 107 from the
smaller to the larger lattice sizes.

T.(C,) ™
L (CU) (SSU) (CU) (SSU)
128 1.6450(18) 1.645(3) 3.55(2) 3.55(3)
256 1.6607(2) 1.6607(13)  4.86(2) 4.88(5)
512 1.6741(9) 1.675(1) 6.54(3) 6.47(6)
1024 1.6815(2) 1.6815(17)  9.14(8) 9.10(24)
2048  1.6856(3) 1.685(1) 13.63(15)  13.73(80)
4096  1.68742(9) 1.6875(10)  2221(34)  21.9(2.2)
8192  1.68801(7) 40.28(44)
16384  1.688031(34) 79.46(35)
32768 1.687851(12) 164.1(4)
65536 1.687749(09) 332.8(6)

T.(x) X"
L (CU) (SSU) (CU) (SSU)
128 1.6793(14) 1.679(4) 3.44(3) 3.46(3)
256 1.6837(2) 1.6837(15)  6.09(3) 6.13(5)
512 1.6864(8) 1.6877(15)  10.81(7) 10.86(13)
1024 1.6882(3) 1.688(2) 19.73(28)  19.8(5)
2048  1.6887(2) 1.6882(15)  37.6(5) 37.5(1.8)
4096  1.68869(9) 1.6887(11)  754(1.2)  74.6(6.7)
8192 1.68842(7) 165.2(1.8)
16384  1.688148(35) 369.8(1.1)
32768 1.687870(20) 827(2)
65536 1.687773(16) 1754(3)

data obtained using cluster updates are reported. An impor-
tant effect we noticed is the presence of a crossover around
L=16384 for T,(C,), where the finite-size transition tem-
perature reaches a maximum; a similar behavior can be wit-
nessed for T,(y) with a maximum occuring around L=4096.
In view of this, we first performed a fit over lattice sizes
ranging from L=256 to L=4096: for this range of lattice
sizes, data points lie neatly on a straight line within error
bars for both T,.(x) and T,(C,). As regards the peaks of the
specific heat, a fit performed over the range L=[256
—-8192] yielded the same estimate of the infinite size tem-
perature, which seems to indicate that L=8192 still belongs
to the region where a linear fit is reliable. Infinite size tem-
peratures are reported in Table V: the temperatures computed
from both methods compare very well with each other and
with the value of 1.691(3) reported in Ref. [7] using a mul-
ticanonical approach and medium lattice sizes. The value
obtained from a previous MC study based on a canonical
version of the Luijten-Blote algorithm [69] lies clearly above
our estimate, while estimates obtained from a transfer matrix
method [70] and a real-space renormalization group ap-
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FIG. 10. Specific heat for the three-state Potts chain with o
=0.5 as obtained with our method.

proach [71] fall markedly below our values. Finally, the best
estimate determined so far (to the best of our knowledge)
with a numerical approach, namely, the value of T,
=1.685 42 obtained in Ref. [72] with the cluster mean-field
method, lies slightly below ours. The occurence of a cross-
over for both response functions led us to perform a distinct
linear fit restricted to the three largest lattice sizes (see the
inset of Fig. 11 and results in Table V): this yielded T,()
=1.687 64(1) and T,.()=1.687 65(2) for T.(C,) and T.(y),
respectively. In terms of the number of digits of precision,
these estimates are comparable to the value reported in Ref.
[72], although they still lie above it by around 0.13%. This is
all the more surprising that, even if the accuracy of the clus-
ter mean-field method decreases with increasing o (with o

T T T

T
T{x} % |
T.(C.) Z

168 .
169
167 F “\If“i‘* -
16805
1 L °
=
1.66 |- 1.687} : -
0 00001 00002 l
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FIG. 11. Solid lines show linear fits of finite-size transition tem-
peratures vs 1/L for the three-state LR Potts chain with ¢=0.5,
performed over sizes ranging from L=256 to L=4096. T.(C,) and
T.(x) are defined from the peaks of the specific heat C, and the
susceptibility y, respectively; all data were obtained using cluster
updates (CU). The inset shows a detailed view at larger lattice sizes,
along with a linear fit carried out over the three largest sizes L
=16384,L=32768, and L=65 536. Error bars are smaller than the
size of symbols, except where explicitly indicated. The horizontal
arrow shows the infinite-size estimate 7,.=1.68542 obtained by
Monroe using the cluster mean-field method [72], while the vertical
dashed error bar refers to the infinite-size estimate 7,=1.691(3)
obtained in Ref. [7]. Finally, L., indicates the lattice size at which
the graph of the peaks of U, vs the lattice size changes slope (see
Fig. 12), and ¢ refers to our estimate of the correlation length.
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TABLE V. Infinite size transition temperatures computed from a
fit of finite-size temperatures to a power law of the form T,(L)
—T.(©)=a/L. The first column indicates the range of lattice sizes
that were used in the fit. Results from previous studies are shown
for comparison in the last column: Ref. [7], MC study based on
Berg’s multicanonical method and sizes up to L=400; Ref. [72],
cluster mean-field method; Ref. [70], transfer matrix method; Ref.
[69], MC study based on the Lujiten-Bléte cluster algorithm and
sizes up to L=3000; Ref. [71], real-space renormalization group
approach.

T(Cy)
[Li—L,] (Cu) (SSU)
256-4096 1.6889(1) 1.6888(8)
256-8192 1.6889(1)
16384-65536 1.68764(1)

T.(x)

(CU) (SSU)

256-4096 1.6893(1) 1.6892(6)
16384-65536 1.68765(2)
Ref. [7] 1.691(3)
Ref. [72] 1.68542
Ref. [70] 1.664
Ref. [69] 1.72
Ref. [71] 1.41

<0.5 being quoted by the authors in Ref. [72] as the interval
where the method produces its most accurate estimates), this
method always produces—by construction—upper bounds
for transition temperatures, irrespective of the size of the
clusters. Noteworthy enough, a similar discrepancy was re-
ported by the authors of an MC study of the LR Ising model
based on the Luijten-Blote algorithm [73], with the cluster
mean-field approach [74] yielding values underestimated by
0.8% for o=0.5. Since the authors in Refs. [72,74] per-
formed an extrapolation procedure to compute the infinite-
size estimate from temperatures obtained at finite cluster
size, the discrepancy may thus be attributed to their specific
extrapolation procedure rather than to the method used to
produce finite-size estimates.

In order to shed light on the presence of a crossover, we
compared the lattice size at which the crossover occurs with
two characteristic lengths. One such length is the lattice size
L., where the peak of the reduced Binder cumulant of the
energy, namely, U]*=max((E*)/(E?)?), experiences a mini-
mum. At a second-order phase transition, U;“" tends trivially
to 1 in the thermodynamic limit, while it tends to a distinct
value if the transition is of the first order. As illustrated in
Fig. 12, the graph of U with respect to the lattice size is
clearly characteristic of a first-order transition, with an
infinite-size value lying close to 1.033. A minimum occurs at
L.,~ 8192 and—as shown in the inset of Fig. 11—the cross-
over occurs slightly above L., for T.(C,), and slightly below
for T.(x). For 0=0.2, the same correlation is witnessed by
our results, with the change of slope of Uj'* taking place
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FIG. 12. Peak of the cumulant of the energy U, =(E*)/(E*)* as
a function of the lattice size for the three-state LR Potts chain with
0=0.2 and 0=0.5. The inset shows a magnification near the origin
for 0=0.5; L, indicates the approximate lattice size at which the
curve changes slope, crossing over to a first-order transition
behavior.

around L.,=2048, and a change of behavior T,.(C,) occuring
near L=4096. Another characteristic length is the correlation
length of the disordered phase, which we compute in a sub-
sequent part of this section: for ¢=0.5, our estimate of &,
~ 5000 lies, here again, very close to the change of behavior
of T.(C,) and T.x) (see the inset of Fig. 11); for o
=0.2,&,~600, and T,(C,) and T.(x) depart from the straight
line at L~ 3000 and L~ 1000, respectively. For both values
of o, we thus observe the same qualitative behavior, namely,
the crossover occurs at sizes slightly above L., and & We
think that this may be attributed for one part to the fact that,
as long as the lattice size is smaller than the correlation
length, the finite-size scaling behavior of the model is that of
a continuous transition, whereas it is first-order-like at larger
sizes. Another important finite-size effect may be specifically
linked to the long-range nature of the interaction: in Ref. [7],
it was suggested that, irrespective of the type of periodic
boundary conditions implemented, the finite size of the lat-
tice shifts the (effective) decay parameter o towards the
mean-field regime, in a way that is more pronounced at small
lattice size; this effect may thus compete with the previous
effect in a nontrivial manner. It is therefore apparent that the
power law used in our fits is not sufficient to model the
finite-size scaling behavior in an accurate way over the entire
range of lattice sizes; the derivation of an appropriate finite-
size scaling law including corrections to scaling is left, how-
ever, to a subsequent work.

We also note in passing that, for 0=0.5, relying on the
Binder cumulant to assess the first-order nature of the tran-
sition requires simulating the system up to sizes that are far
beyond the capabilities of single-spin update implementa-
tions. In particular, performing a power-law fit of U, re-
stricted to sizes below L~ 3000 would yield underestimated
values. Our results in Fig. 12 show that the infinite size value
lies around 1.033, and thus that the transition is stronger than
suggested, for instance, in Ref. [69].

Although a precise determination of correlation lengths
for the LR Potts chain is beyond the scope of this work, we
tried to obtain rough estimates of them from the finite-size
scaling behavior of the interface free energy F°. As in Sec. V,
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FIG. 13. Graph of the free energy F(T,E)=—In N(T,E) for the
three-state LR Potts chain with =0.5. N(T,E) is the histogram of
the energy reweighted at a pseudotransition temperature 7,,;, where
both peaks have the same height. For the four lattice sizes shown
here, lattice configurations corresponding to phase coexistence are
suppressed by a factor ranging from 0.1 to 10~ with respect to pure
phase configurations; for the three largest sizes, we note that a ca-
nonical simulation is clearly intractable.

we computed a histogram N(T,E) of the energy reweighted
at the pseudotransition temperature 7., where both peaks of
the histogram have equal height (see Fig. 13). After normal-
ization of the peak heights to unity, 2F* is given by —In P,,;,
where P,,;, stands for the minimum of the histogram between
the two energy peaks. With this definition, which is analog to
that used in models with nearest-neighbor interactions, 2F*
corresponds to the free energy cost associated—when peri-
odic boundary conditions are used—with the creation of
mixed ordered-disordered configurations from pure phase
configurations. As we will witness, there is strong evidence
that the dimension of the interface is no longer an integer. By
fitting the interface free energy to the power law F* o L% we
obtain a very good fit for sizes ranging from L=256 to L
=65 536, yielding @=0.91(2) and 2F*/L*=0.0004 in the
thermodynamic limit. This is illustrated in Fig. 14. For o
=0.2, we obtain @=0.74(3) from a fit performed over sizes
ranging from L=512 to L=8192. In view of the expected
behavior for nearest-neighbor interactions, namely, F* scales
to leading order as a power of the lattice size with an expo-

10 e

2F®

0.01 - L '
102 108 104 10°
L

FIG. 14. Fit of the interface free energy F* to a power law of the
lattice size for the three-state LR Potts chain with 0=0.5. All esti-
mates of ¥ were obtained with our method.
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nent given by the dimension of the interface [75], this sug-
gests that the effective dimension of the interface lies be-
tween 0 and 1 for long-range chains. This assumption is also
supported by the fact that the fits of F*/L in Ref. [69] exhibit
important finite-size corrections, while our fit with a nonin-
teger exponent does not suggest such corrections.

Finally, we can estimate the correlation length by trans-
posing the argument that was proposed in Ref. [59] to relate
the interface tension f* of the nearest-neighbor Potts model
to the correlation length &, of its disordered phase. This ar-
gument relies on two ingredients: (i) the correspondence be-
tween the order-order interface tension and the correlation
length of the disordered phase, which results from duality;
(i) the assumption of complete wetting, which implies a
simple relation between the order-order and order-disorder
interface tensions, where the latter is the quantity f* we mea-
sure from the reweighted histogram of the energy. The sec-
ond assumption is rigorous if g is large enough, although the
authors in Ref. [59] suggest that it should stay valid for all ¢
for which the transition is of the first order. The argument
leads to the relation &' =2*=2F*/L for the nearest-neighbor
model: in view of the finite-size scaling behavior of F* re-
ported above for the LR chain, it seems natural to transpose
this relation by defining the interface tension as f*=F*/L® for
LR chains, and dimensional analysis thus suggests to use the
relation &,“=2f"=2F*/L" in the LR case. This yields an es-
timate of &;~ 5000 for the LR chain at 0=0.5, a value that
seems at least consistent with the fact that the change of
slope of U™ occurs at a lattice size slightly above this size
(see Fig. 12). For ¢=0.2, the same relation yields &;~ 600,
and here again this estimate is consistent with the behavior
of Uy in addition, and as expected, &, decreases with o,
i.e., as the transition becomes stronger. Although there is no
rigorous proof that the ingredients invoked in Ref. [59] retain
their validity in the case of LR interactions, it seems that a
straightforward transposition to LR interactions yields rea-
sonable results, even though the topology of the interface
between the ordered and disordered phases is certainly far
more complex than in nearest-neighbor models. In addition,
we make use of infinite image periodic boundary conditions
[11], so that the factor 2 in the definition of the interface
tension might be questionable in LR models. Altogether our
estimates should thus be taken as very rough ones.

VII. COMBINATION WITH THE TRANSITION
MATRIX METHOD

In this section, we examine how our method can be effi-
ciently combined with the transition matrix method [25]. We
show in particular that transition matrices represent a very
efficient way of estimating the microcanonical temperature
B(E) used to compute cluster bond probabilities when noth-
ing is known initially about the density of states. We also
discuss how the estimated B(E) can then be used as an effi-
cient predictor to speed up the convergence towards the
ground state during the early iterations of the Wang-Landau
algorithm.

A. Efficient estimation of B(E) and bootstrapping

As seems obvious from the scheme presented in Sec. I,
one of the basic requirements of our algorithm is to have an
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FIG. 15. Microcanonical inverse temperature B(E)=dS(E)/dE
computed from the estimated density of states using a spline inter-
polation, for the three-state long-range chain with =0.4, 0.5, and
0.6 from bottom to top.

estimate of B(E) at our disposal over the whole energy axis
in order to compute cluster bond probabilities. One rather
simple way of estimating B(E) is to compute it from the
current estimate of the density of states n(E) using a finite-
difference scheme, i.e., in real-time in the course of the it-
eration scheme. This is the most tractable approach if one
decides to rely solely on Wang-Landau’s algorithm to esti-
mate n(E). During early iterations, however, the estimate of
n(E) is somewhat rough and it is necessary to resort to a
spline interpolation in order to obtain a sufficiently smooth
estimate of B(E). Since the unequal spacing of energy levels
in long-range models renders an interpolation scheme for
n(E) absolutely mandatory [7], B(E) is already available to
us for free. Figure 15 shows estimates obtained with this
approach for the three-state long-range chain with various
interaction ranges, computed after ten iteration steps of
10 000 measurements each. We note in passing that the pres-
ence of a clearly visible minimum in the three cases results
from the first-order nature of the transition. For sufficiently
short-range interactions, and when no random disorder is
present, the microcanonical entropy S(E) scales quite gently
with the lattice size, and it is also perfectly feasible to use the
value of B(E) obtained at a smaller lattice size as an initial
guess.

In any case, it is crucial for the performance of our algo-
rithm that we should compute B(E) to sufficient accuracy.
Indeed, we have found that any departure from the ideal line
results in poorer performance, as illustrated in Fig. 16. The
curve (a) in the figure shows the mean acceptance rate as a
function of the energy for an estimate of B(E) obtained after
the ultimate Wang-Landau iteration and a modification factor
In f=107". Curves (b) and (c) show the same quantity for
microcanonical temperatures that were under- and overesti-
mated by 10%. The poor estimate of B(E) causes a marked
decrease of the acceptance rate in the transition region
(around E/L~-1.5), from around 100% to nearly 40%. Tun-
neling times obviously experience a corresponding increase,
from 243 for the under- and overestimated temperatures, re-
spectively. This can be easily explained, if one considers that
the efficiency of cluster updates reaches a maximum at the
percolation threshold. Any departure of the estimate of B(E)
from the ideal line results in a shift between the temperature
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FIG. 16. Mean acceptance rate as a function of the energy per
spin for the six-state long-range Potts chain with 0=0.5 and L
=512 spins (strong first-order regime) for three distinct estimates of
B(E). (a) Best estimate, as given by the ultimate iteration of the
Wang-Landau algorithm; (b) B(E) scaled by 0:9; (c) B(E) scaled by
1:1.

at which clusters percolate [which depends on B(E)] and the
effective temperature of the system [which is given by
dS(E)/dE]. This behavior has been observed in the context
of canonical simulations of disordered systems, e.g., the ran-
dom field Ising model [76], where the presence of random-
ness depresses the critical temperature. In this case, using the
(canonical) simulation temperature to compute the bond
probabilities simply results in a growing shift between the
critical temperature and the percolation threshold as the ran-
domness is increased.

In view of the previously mentioned requirements on the
estimation of B(E), it is clear that, if one does not have a
reliable guess of B(E) at hand before the simulation starts, an
efficient scheme must be devised in order to compute B(E) in
the early stage of the Wang-Landau algorithm. This is vital at
this stage, because the exceedingly noisy estimate of the den-
sity of states makes it more likely to obtain under- or over-
estimated values for B(E). An efficient approach in this re-
gards relies on transition matrices [25,77]. This method
produces highly precise estimates of B(E), although it has an
inherently higher cost in terms of computer load. The starting
point is the broad histogram equation [53,78]:

nE)TL(E—E")=n(E"\T,(E' —E),

where T..(E—E') is the transition matrix element between
energy levels E and E’ [also denoted as (N(o,E'—E))g in
Ref. [78]]. This quantity contains the microcanonical average
at energy E of the number of potential single-spin moves
from a state o of energy E to a state o’ of energy E’. It is
estimated by accumulating a double-entry histogram
h(E,AE) containing the number of potential moves from E
to E+AE each time the energy level E is visited. Long-range
interactions lead to energy levels which are irregularly
spaced, with in particular a few gaps in the vicinity of the
ground state [7], and it is necessary to choose an axis bin
small enough to minimize discretization errors, and at the
same time sufficiently large to contain at least a handful of
entries. In this case, T..(E— E’) varies sufficiently smoothly
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FIG. 17. Symbols show the microcanonical inverse temperature
B(E) computed from the transition matrix accumulated over 2000
MCSs, for the six-state LR model (0=0.5) containing 512 spins.
The estimate obtained from an interpolation scheme after the ulti-
mate iteration is shown as a solid line for comparison.

for the following approximation scheme to be valid:

1 T.E—E+AE)

B(E) = —In———————,
AE T.(E— E-AE)
where the actual estimate is obtained by weighted-averaging
over several values of AE. As illustrated in Fig. 17 for the
six-state LR chain, the estimation of B(E) from the transition
matrix elements is reliable already after 2000 MCSs, which
roughly corresponds to 50 round trips between the upper and
the lower energy range. For long-range models, each estima-
tion of the number of potential moves requires of order L>”
operations (as opposed to LP for nearest-neighbor interac-
tions). However, we have shown in Sec. III that a single
cluster update can demand as little as O(LPIn LP) operations
when long-range specific optimizations are carried out;
hence estimation schemes based on transition matrices partly
scupper the benefits of these optimizations, and should there-
fore be employed only as a bootstrap procedure when noth-
ing is known yet about the microcanonical temperature. Con-
versely, models with nearest-neighbor interactions do not
undergo such a drawback, and make the transition matrix
approach a perfectly transparent one from the viewpoint of
algorithm complexity.

B. Efficient predictors for the Wang-Landau algorithm

Finally, we discuss how B(E) can be used as an efficient
predictor during the early stage of the Wang-Landau algo-
rithm when nothing is known about the density of states. In
the original implementation of this algorithm, we start with
S(E)=0 for all energy levels, and simply increment S(E) by
the modification factor In f each time the corresponding en-
ergy level is visited. One of the main drawbacks of this ap-
proach is that the Markov chain tends to wander around a
fairly long time in the upper energy range, until eventually
enough visits have been recorded in the histogram for the
system to start exploring low-energy levels. This point has
already been mentioned in Ref. [34], where it was suggested
that starting with a good initial guess of S(E) was more ef-
ficient in terms of the number of histogram entries required
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FIG. 18. The graph shows the number of MCSs needed to reach
the ground-state (dashed horizontal line) of the six-state Potts chain
(0=0.5 and L=512) for an initially unknown density of states, us-
ing three distinct schemes: (a) and (b) predictor based on B(E),
local- and collective-update algorithms, respectively; (c) no predic-
tor [S(E)=0, V E], local-update algorithm.

to reach the final estimate, than performing a multirange run
with no initial guess at all. To circumvent this drawback
when no initial guess is available, we therefore propose to
use B(E) to predict S(E) for energy levels that have not been
visited yet during the simulation, and thus for which S(E) is
not available [i.e., it is set to S(£)=0 in the original imple-
mentation of the Wang-Landau algorithm]. A linear predic-
tion scheme turned out to be sufficiently efficient for our
purpose. As illustrated in Fig. 18, using a predictor brings
about a gain of three orders of magnitude in the time needed
to reach the ground state. Our method and the single-spin
update method lead similar performances, with however a
slightly better behavior when cluster updates are used. We
note that the Markov chain stays initially somewhat longer in
the upper energy range when cluster updates are used, since
a good estimate of B(E) is needed to build the clusters with
the correct bond probabilities. We think that this approach
would prove particularly useful when the characteristics of
the model makes it impossible to obtain an initial guess of
S(E) from simulations at smaller lattice sizes, e.g., in the
presence of disorder or when the long-range interaction ex-
periences a slow decay.
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VIII. CONCLUSION

In conclusion, we have developed a new Monte Carlo
method which combines in an efficient and straightforward
way the benefits of flat histogram algorithms with the fast-
decorrelating capabilities of cluster updates. It is suited for
spin models with any number of interaction between spins.
Our formulation is versatile, and the method can be applied
to a variety of density of states estimation schemes, includ-
ing the Wang-Landau algorithm, Berg’s recursion scheme, or
the transition matrix method. We have shown that using the
microcanonical temperature to compute cluster bond prob-
abilities leads to a drastic reduction in effective autocorrela-
tion times, tunneling times, and equilibration times. In the
context of the Wang-Landau implementation, the reduced
correlation between successive binning of the energy histo-
gram yields a lower error in the estimation of the density of
states, and as a result more reliable estimates of thermody-
namic averages. Several schemes for the estimation of the
microcanonical temperature were proposed, among which an
efficient procedure which harnesses the power of the transi-
tion matrix method, and allows us to bootstrap the algorithm
even if nothing is known initially about the density of states.
Finally, we carefully examined the precision of our method
in the case of spin models with power-law decaying interac-
tions. Here, our method proves all the more powerful that it
is able to reduce the algorithm complexity to that of a short-
range model having the same number of spins. This allowed
us to study several finite-size effects at large lattice sizes,
otherwise largely out of reach of conventional local-update
implementations. In particular, we found out that the inter-
face free energy scales perfectly well with a power of the
lattice size, yet with a noninteger exponent which lies be-
tween 0 and 1. This, we think, is accounted for by the com-
plex topology of the phases in coexistence in long-range
models. A more detailed study, including a deeper insight
into the topological properties of the generated clusters and
the estimation of correlation lengths at large lattice sizes,
would be very promising. We think that our method clearly
draws this challenge within computation range.
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